Connect with us

Planets

Asteroids : What is an asteroid? To put it simply…

Published

on

it is a rock that floats through space. Sizes vary. They can be big or small and have a variety of shapes. It is thought that quite a few of these rocks are mineral – rich. They may carry rare and valuable ores. It has been estimated that there is enough mineral wealth in the Asteroid Belt, between Mars and Jupiter, to make multi billionaires of all! Much iron has been detected in some of them. Many of them are made of sandy – relatively – light silicates.

These rocks played a very important role in the formation of our solar system. In the beginning of planet formation, they often collided, melted from the heat of impact, and bonded together to form bigger hunks. Eventually they formed planetoids and then planets. Other rocks collided and became smaller planetoids which could be captured by a planet’s gravity. They fell into orbit and became what we call moons.

There are a lot of these rocks floating about. They usually fall under the gravitational influence, or pull, of bigger objects in our solar system. Many form a “belt” between two planets: Mars and Jupiter. Some scientists think that a planet might have broken up and that these pieces are the leftovers. Others believe this is simply space junk that never got to form a new planet.

These rocks perhaps may number in the billions; some are the size of sand grains, peas and softballs. Some are the size of states. Big asteroids can even have micro gravity.

Japan recently scored a major success by sending a probe named Hayabusa to rendezvous with an asteroid. (The probe is expected to return to Earth in 2010.) Hopefully it will bring samples collected from the surface of the asteroid.

The asteroid called Itokawa is 1,800 feet long by 900 feet at its widest point. Its composition seems to be silicate rock, making it a chondrite. Its orbital paths may cause it to be a dangerous object for Earth someday. Space rocks can mean much in your life. They provide entertainment with “shooting stars” and meteor showers. Or they can kill you in gigantic collisions with Earth.

The asteroid Ida actually has its own moon! It is called Dactyl. Ida is about 36 miles long, while Dactyl is about 1 mile wide.

An Example of Concern

may have its flight path altered as it passes us. This is called the keyhole effect. If so, seven years later, when it comes by again, it may well hit us. It is about 1,000 feet in diameter and can cause problems, but in on 69 a regional, not global, scale.

Members of NASA have proposed sending a probe in the near future to study the composition and makeup of the PHA (Potentially Hazardous Asteroid) object. Because of monetary constraints and a feeling that the chances of a hit are about twenty percent twenty three years from now, this mission will not happen in the near term.

As of now, no asteroid has been spotted that is heading for Earth.

Comets

Comets Wild

The word “comet”, comes from the Greek word kometes, meaning long hair. This refers to the long tails that comets develop when they close in on the Sun. They wander through space, cold and dark, their jagged edges stabbing into darkness until, one day, they move ever so slightly on a new course. Their momentum increases as a strengthening force of gravity pulls them onward.

As the gravitational influence of the sun upon the comet grows, the comet’s speed increases. Eventually, the effects of solar winds and heat come upon it icy surfaces. A brilliant tail forms. The comet becomes a glorious show of light, ice, gas, and streaming particles.

Comets have long been sources of wonder and mystery to planet Earth’s human population. They were thought of as pretenders of great events, in forms of disasters. Comets were dreaded. There are written accounts of them going back over two thousand years.

Although they can be potentially “bad news” to earthlings, they are just natural objects wandering in and around our solar system.

The comets in our solar system are found on an elliptical orbit. They are attracted by the Sun and swing by it before going way out and then coming back in again. Eventually they either run into the Sun and melt, or they hit other objects, such as us!

The famous Halley’s Comet comes around every seventy years; it is like a bus on a schedule. The last time it passed by Earth was in 1986. Many of you may be alive when it passes by again. It has been tracked since the Middle Ages. Another comet, Hale-Bopp, came near to us in 1996. It is over thirty miles long and shaped like an island with mountains.

Halley’s Comet Courtesy NASA

The head of the comet is called the nucleus. When it enters far enough into our solar system it develops a coma, a halo of particles flying off the comet. The particles trail behind the coma and turn into a long transparent tail. Comas have been seen to extend as far as sixty thousand miles from the surface of the comet, while tails can extend millions of miles into space. An additional feature of a comet is its hydrogen cloud. This cloud surrounds the comet but cannot been seen from Earth.

In 1950 Fred Whipple created a good analogy by describing a comet as “dirty snowballs.” Comets are made of water ice, frozen gases, stony materials and some metal solids. They are much less dense than meteors. There is some surface gravity on larger ones.

Gases coming off the comet contain the following compounds: carbon dioxide, silicates, nitrogen, hydrogen and carbon. All of these are the building blocks of life. What causes all the surface action when a comet comes close enough to the Sun? The Sun’s solar heat causes the frozen gases to defrost, and solar gravity pulls off dust. The gases and dust cannot be held by the comet’s weak gravity, so they go out into space and are captured by the same solar gravitational forces pulling the nucleus. The gases become fluorescent and the dust reflects sunlight. The comet soon becomes very visible. About twenty five of these light streaks are spotted every year.

Once ultraviolet radiation interacts with the gases, it causes the molecules to tear apart. The results are floating free radical particles known as ions. These ions mix with solar winds to form the long tails on the comets.

The ionized hydrogen gases flowing out at the front of the coma produce a bow shock. (This is when gases block the solar winds directly in front of the comet, forcing them off to the sides.)

Comet Tempel 1

A probe called Giotto came within 375 miles of Halley’s Comet’s head, or nucleus. It found the nucleus to be very dark, about five miles long by nine miles wide. It rotated at a speed of once every two 71 days. The surface was full of cracks, crevasses and possibly craters. From a portion of the surface gases, water vapor and dust were venting out toward the Sun. Parts of the surface looked blackened as if burned. Perhaps because of Halley’s previous passes near the Sun, frozen surface layers were either blown away or burned off.

Where do these “snow balls” come from? Many comets lie in wait in the farthest edges of our solar system in a place called the Oort Cloud. It is thought to contain as many as one trillion comets.

It was once presumed that all comets are white because of the water ice. This has been disproved. A green comet was observed in 2007 by an amateur astronomer from China. He named it Lulin. It flew by the Earth in 2009.

Why green? The comet gases, containing cyanogen and diatomic carbon, cast a green glow when light hits the particles in a vacuum, such as space.

It does not take much for these comets to start a fatal freefall toward our Sun. Imagine you in front of a comet that is ten miles wide by twenty miles long. Put out your hand and flick it with your finger. You have begun its new journey! At first the motion would not even be noticeable, but over a period of time the speed would increase and thousands of years later there would be another comet in our neighborhood.

Stars occasionally pass within a few light years of our solar system. That influence, that little gravitational change in our part of the galaxy, is enough to set in motion the movement of great mountains of ice and rock, sending these comets towards the Sun.

These comets are very dangerous to us. They are unpredictable. Many are huge. A midsized comet could virtually wipe out life on Earth. One, named Shoemaker-Levy 9, collided with Jupiter in 1994. It had been broken into fifteen chunks by Jupiter’s gravity and hit the planet with one piece after another. One such piece left a bruise on Jupiter that was the size of our planet! Undoubtedly, Jupiter has saved us many times from a collision. Jupiter, the great vacuum cleaner!

The result of another comet impact with Jupiter was witnessed in late 2009. This occurred in the area of Jupiter’s South Pole and left a mark similar to the ShoemakerLevy 9 wound on that planet.

Eventually most comets die a fiery death. We can usually find these large asteroids coming in our direction. If found in time, we might be able to do something about them, but comets are different; often they appear out of the darkness within months of being near to us. There is not enough time to prepare. Don’t let the movies fool you; we are not ready for a large comet!

Comet Linear – Breaking up in to three comets.

Meteors and Meteorites

Barrington crater is located in Winslow, Arizona.

It is well known for its nearly perfect state of preservation.

What is a meteor? Meteors are objects that fall from space into our atmosphere. They can also be called bolides. What is a meteorite? It is a meteor that landed on the ground and did not disintegrate on impact.

Because of their speed these objects become engulfed in flames when they hit our air. They can either explode in the air or reach the ground. When they do hit, they cause devastation in proportion to: their size, what they are made of, and how high the combined speed is between Earth and the crashing objects.

Many meteorites are stony, made of silicate minerals (about 94% of all recovered rocks). Some are igneous rocks, others are mostly metal (iron meteorites) and many are a mix of both materials. Meteorites called Chondrites are composed of elements that can be traced back to the times when our solar system was being formed. Some meteors are comets ranging from the size of basketballs, (which fall onto our planet daily); to objects that are miles wide and can cause an extinction level event. (This is when much, or even all, planetary life could be destroyed by a collision).

Meteors may break up and hit the ground like a shot gun blast, or they can land in a single piece and create impact craters. These small rocks entering in our atmosphere in groups are called meteor showers. Large meteors coming through the atmosphere are accompanied by brilliant streaks of light and loud roars. When the meteorites are recovered after landing they are called falls.

When meteors hit the atmosphere they heat up and form a glass-like crust called a fusion crust. Pieces of this type of glass are commonly found near impact craters.

Meteorites have been found in many areas of the world, but most of the samples have been located in Antarctica. So far the samples found in that region represent about 3,000 different meteorites.

NEOs

Near Earth Objects are mainly asteroids, but they can also be short term comets that are orbit the Earth or crossing its orbital path around the Sun.

There are two different types of asteroids and comets to look for. One type 73 are the NEOs or “Near Earth Objects”. The newest term is PHAs, or “Potentially Hazardous Asteroids”. As of January 2010, 1,086 have been found. These rocks in space can come within 4,500,000 miles of Earth and are more than 500 feet in diameter. They represent 90% of the danger in space. They are fairly easy to find. They are in our neighborhood and therefore more readily spotted. The other dangerous space objects are called intermediates and long terms. They are mostly comets. They may take years to drop by and will give us only months of warning of their arrival.

There are scientists watching for large asteroids that may cross our path. These scientists have developed an impact scale from 1 to 10, in case one of these objects does head for Earth. Zero implying virtually no damage, while a scale of 10 represents a catastrophe. The estimate is that there are at least two thousand NEOs cross our orbital highway every year. Many of them could cause the death of hundreds of thousands if they hit us. Some could kill us all.

Many of these objects have been spotted. However, there are few astronomers looking for them due to budgeting problems. Over time, we see less and less of these objects because they have already been drawn in by Earth’s gravity, or they hit the Moon, or have been absorbed by the Sun.

Every day many tons of this debris still hits the Earth’s atmosphere but is in pieces so small that they cause little concern and on occasion entertain us when see as “shooting stars”.

Near Earth Objects are mainly asteroids, but could also be short term comets that are orbiting the Earth or crossing its orbital path around the Sun.

About every 100 years, a rather large (50 yards wide), iron asteroid may hit the earth. Every few hundred thousand years an object can reach the Earth that could cause wide destruction and radical changes in planetary climate.

A famous example of a meteoric event took place in 1908 over Tunguska, Siberia, Russia. A large meteor with an estimated weight of one hundred thousand tons entered the atmosphere. It is believe that it was a comet. It exploded a few miles above the surface of the Earth. The explosion knocked down over one thousand square miles of trees. It had the force of hundreds of atom bombs.

Luckily, this part of Siberia had no human population, and the loss was limited to plants and animals. But the planetary effect was so great that it was virtually day light in London during the middle of the night, even though the blast was five thousand miles away! The sound wave from the blast circled the planet twice! Had it hit the Earth five hours earlier, the Moscow area would have been wiped out.

The largest meteor crater in the United States, found near Winslow, Arizona, is called the Barrington Crater. About three quarters of a mile across and nearly six hundred feet deep, it was caused by the impact of an iron meteorite weighing almost thirty tons.

The most famous crater is located off the Yucatan peninsula in Mexico. Called Chichlxu, it is over 150 miles wide and 74 perhaps twenty miles deep. (Remember, that is about the average thickness of the Earth’s crust.) The ejected rocks were thrown far into space. The composition of the burned rocks produced a poisonous gas. Fires throughout the Earth occurred. There was a dramatic lowering of temperature. During that time, there were no ice caps.

A Meteorite on Mars

This collision with Earth happened about sixty five million years ago, during the Cretaceous Period, the age of the dinosaurs. No fossils of dinosaurs can be found beyond the age of this impact. All over the Earth there is a thin line of iridium found in the sixty five million year level of rocks and soil. Once this event level is located, fossils are not being found in abundance until another level representing the Earth’s surface five thousand years later.

Can this happen again? Most certainly! If a large rock or comet as big as six miles wide or more hits our planet, the devastation will be enormous. One would see earth waves hundreds of feet high. Tsunamis (Fast moving walls of water in the ocean) hundreds or even thousands of feet high, would sweep over much of any nearby coastal lands. Blazing debris from the impact would fall over the surface of the earth. The showers of rocks could be as big as a twenty story office buildings, and fires would rage planet wide. Faults would open up from the tremendous shaking and creating earthquakes. The searing heat would kill most plant life. The dense, choking smoke would soon blot out all sunlight, plunging our planet into freezing cold, with darkness so deep that eyes could be useless. Our planet grows silent and still for perhaps hundreds, or even thousands of years. No structure would be left standing. Any traces of human existence would fade until only a few fossilized foot prints and bones would tell someone in the future that we once existed. We could be the next oil deposit.

Asteroids can be charted to see if they have a chance of crossing our path far in the future. By tracking these objects, we should have years of forewarning and they have chance to use technology to change their course. We could change the velocity of the asteroid comet, but not blow into pieces creating debris that cannot be controlled. When given a warning, far in advance, of an object that may collide with earth the craft sent to intercept it will need less efforts to have the object’s speed and or course adjusted.

Meteorites can be seen in science museums and exhibits around the world. Some have been made into jewelry or pieces of art. Others have been worshiped; it is thought that the great Kaba stone in Mecca, Saudi Arabia, is a meteorite. It is located at the center in an area where millions walk in a circle as they complete their Muslim pilgrimage to Mecca.

One meteorite, discovered in 75 Antarctica, had a profound influence on mankind. When opened, researchers found what appear to be fossils of tiny animals (micro-organisms). The chemical composition of the rocks was traced back to Mars. Millions upon millions of years ago, a large meteor hit Mars. Some Martian rocks were hurled so far that not only did they make it into space, but they even escaped Mars’ gravity. Eventually some of those rocks fell to Earth.

Comet-meteors may also account for many of our oceans. The process of billions of those “dirty snow balls” entering our atmosphere has made us water and oxygen rich. Thus, these menacing objects from the sky may support life as well as take it away.

This is an artist’s conception of a large asteroid crashing into Earth.
The above Willamette Meteorite was found in Oregon It weighs 32,000 pounds.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Planets

A LABORATORY ON MARS

Published

on

In August 2012, the Mars Science Laboratory Rover, better known as Curiosity, landed on Mars. This 2,000-lb (900-kg) wheeled vehicle, which is still roaming the Martian surface, is a mobile laboratory equipped to conduct geological experiments aimed at figuring out the natural history of the red planet. It is the latest robot explorer to reach Mars, and the largest and most advanced in a long line of rovers sent to explore other worlds.

“Mars has been flown by, orbited, smacked into, radar-examined, and rocketed onto, as well as bounced upon, rolled over, shoveled, drilled into, baked, and even blasted. Still to come: Mars being stepped on.” Buzz Aldrin

Wanderers

The potential of rovers in space was clear as far back as 1971, when Apollo 15 carried a four-wheel Lunar Roving Vehicle to the moon. This agile twoseater widened the scope of lunar exploration for the last three Apollo missions. For instance, during the first moon landing in 1969, Neil Armstrong and Buzz Aldrin spent just two and a half hours moonwalking, and the farthest they moved from their lunar module was 200 ft (60 m). By contrast, however, in the final Apollo moon mission, Apollo 17, in 1972, the crew of two—Eugene Cernan and Harrison Schmitt—spent more than 22 hours outside. In their rover, they covered 22 miles (36 km) in total, with one drive taking the pair 4.7 miles (7.6 km) from their spacecraft. The Lunar Roving Vehicle, or moon buggy, was used to collect rocks. The six Apollo missions returned to Earth with 840 lb (381 kg) of them.

Analysis of these rocks revealed much about the history of the moon. The oldest were about 4.6 billion years old, and their chemical composition clearly showed a common ancestry with rocks on Earth. Tests revealed no evidence of organic compounds, indicating that the moon has always been a dry and lifeless world.

Geologist−astronaut Harrison Schmitt collects samples from the lunar surface during the 1972 Apollo 17 mission. He spent many hours exploring the surface on the moon buggy.

Lunokhod 1

The Soviet lunar program, which began in the early 1960s, relied on unmanned probes to explore the moon. Three of the Soviet Luna probes returned with a total of 11.5 oz (326 g) of rock. Then, in November 1970, the Soviet lander Luna 17 arrived at a large lunar plain called the Sea of Rains (many lunar areas are named after the weather conditions they were once thought to influence on Earth). Luna 17 carried the remote-controlled rover Lunokhod 1 (Lunokhod means “moonwalker”). This was the first wheeled vehicle to traverse an extraterrestrial world, arriving about eight months before the first Apollo buggy. The concept behind it was simple—instead of sending moon rocks to Earth, the rover would do the analysis there.

The Soviet Lunokhod 1 rover, seen here in tests on Earth, was the first rover ever to land on an alien world—its predecessor, Lunokhod 0, was launched in 1969 but never reached orbit

Remote-controlled explorer

The Lunokhod rover was 7½-ft (2.3-m) long and resembled a motorized bathtub. The wheels were independently powered so that they could retain traction on the rough lunar terrain. Lunokhod was equipped with video cameras that sent back TV footage of the moon. An X-ray spectrometer was used to analyze the chemical composition of rocks, and a device called a penetrometer was pushed into the lunar regolith (soil) to measure its density. Lunokhod was powered by batteries that were charged by day using an array of solar panels that folded out from the top of the rover. At night, a source of radioactive polonium inside the machine acted as a heater to keep the machinery working. The rover received commands from controllers on Earth about where to go and when to perform experiments. A human might have done a better job, but rovers could stay in space for months on end, and did not require food and water from Earth.

Lunokhod 1 was designed to work for three months, but lasted almost 11. In January 1973, Lunokhod 2 landed in the Le Monnier Crater on the edge of the Sea of Serenity. By June, Lunokhod 2 had traveled a total of 24 miles (39 km), a record that would stand for more than three decades.

“Over time you could terraform Mars to look like Earth … So it’s a fixer-upper of a planet.” Elon Musk

Martian walker

As Lunokhod 1 was exploring the moon, the Soviet space program was eyeing an even greater prize: a rover on Mars. In December 1971, two Soviet spacecraft, code-named Mars 2 and Mars 3, sent modules to land on the red planet. Mars 2 crashed, but Mars 3 made a successful touchdown—the firstever landing on Mars. However, it lost all communications just 14.5 seconds later, probably due to damage from an intense dust storm. Scientists never found out what happened to Mars 3’s cargo: a Prop-M rover, a tiny 10-lb (4.5-kg) vehicle designed to walk on two ski-shaped feet. It was powered through a 50-ft (15-m) umbilical cord, and once on the surface was designed to take readings of the Martian soil. It is unlikely that the Prop-M ever carried out its mission, but it was programmed to operate without input from Earth. A radio signal between the moon and Earth travels in less than 2 seconds, but a signal to or from Mars takes between 3 and 21 minutes to arrive, varying with the planet’s distance from Earth. For a Martian rover to be a successful explorer, it needed to work autonomously.

Bounce down

In 1976, NASA’s two Viking landers sent back the first pictures of Mars. Following this success, many more rovers were planned, but most of these projects never reached their destination, succumbing to what the press dubbed the “Martian Curse.”

NASA eventually had a success with its 1997 Mars Pathfinder mission. In July of that year, the Pathfinder spacecraft entered the Martian atmosphere. Slowed first by the friction of a heat shield and then by a large parachute, the spacecraft jettisoned its outer shielding, and the lander inside was lowered on a 65-ft (20-m) tether. As it neared the surface, huge protective airbags inflated around the lander, and retrorockets on the spacecraft holding the tether fired to slow the speed of descent. The tether was then cut, and the lander bounced across the Martian surface until it rolled to a stop. Fortunately, once the airbags had deflated, the lander was the right side up. The three upper sides or “petals” of the tetrahedral lander folded outward, revealing the 24-lb (11-kg) rover.

During development, the rover was called MFEX, short for Microrover Flight Experiment. However, it was known to the public as Sojourner, meaning “traveler” and chosen for its link to Sojourner Truth, a 19th-century US abolitionist and rights activist.

“We landed in a nice flat spot. Beautiful, really beautiful.” Adam Steltzner

Rolling on Mars

Sojourner was the first rover to take a tour of the Martian surface. However, the Pathfinder mission was really a test for the innovative landing system and the technology that would power larger rovers in the future. The minuscule vehicle traveled just 300 ft (100 m) during its 83-day mission, and never ventured farther than 40 ft (12 m) from the lander. Now named the Carl Sagan Memorial Station, the lander was used to relay data from the rover back to Earth. Most of the rover’s power came from small solar panels on the top. One of the goals of the mission was to see how these panels stood up to extreme temperatures and what power could be generated in the faint Martian sunlight.

The rover’s activities were run from NASA’s Jet Propulsion Laboratory (JPL) in California, and JPL has remained the lead agency in developing Martian rovers. With the time delays inherent in communicating with Mars, it is not possible to drive a rover in real time, so every leg of a journey must be preprogrammed. To achieve this, cameras on the lander were used to create a virtual model of the surface around Sojourner. Human controllers could view the area in 3-D from any angle before mapping a route for the rover.

During its 83 days of operation, the tiny Sojourner rover explored around 2,691 sq ft (250 sq m) of the planet’s surface and recorded 550 images.

Spirit and Opportunity

Despite its limitations in terms of size and power, Sojourner’s mission was a great success, and NASA pressed ahead with two Mars Exploration Rovers (MERs). In June 2003, MER A, named Spirit, and MER B, Opportunity, were ready for launch. They were about the same size as a Lunokhod rover, but were much lighter, at around 400 lb (180 kg). By the end of January the following year, both were traveling across the Martian deserts, hills, and plains, photographing surface features and chemically analyzing rock samples and atmosphere. They sent back the most glorious vistas of the Martian landscape ever seen, enabling geologists to examine the large-scale structures of the planet.

Spirit and Opportunity had landed using the same airbag-and-tether system as Sojourner. Like Sojourner, both relied on solar panels, but the new rovers were built as self-contained units, able to wander far from their landers. Each vehicle’s six wheels were attached to a rocking mechanism, which made it possible for the rovers to keep at least two wheels on the ground as they crossed rugged terrain. The software offered a degree of autonomy so that the rovers could respond to unpredictable events, such as a sudden dust storm, without needing to wait for instructions from Earth.

“Whatever the reason you’re on Mars is, I’m glad you’re there. And I wish I was with you.” Carl Sagan

Low expectations

Nevertheless, expectations for these rovers were low. JPL expected that they would cover about 2,000 ft (600 m) and last for 90 Martian sols (equivalent to about 90 Earth days). During the Martian winter, however, the team did not know whether the solar-powered rovers would retain adequate power to keep working. Of all the solar system’s rocky planets, the seasons of Mars are the most Earth-like, due to the similar tilts of the planets’ rotational axes. Martin winters are dark and bitterly cold, with surface temperatures falling to as low as –225°F (–143°C) near the polar ice caps.

As predicted, Martian winds blew fine dust onto the solar arrays, cutting their generating power; but the wind also blew the panels clean from time to time. As winter drew nearer, the JPL team searched for suitable locations in which the rovers could safely hibernate. To do this, they used a 3-D viewer built from the images taken from the rover’s stereoscopic cameras. They chose steep slopes that faced the rising sun in order to maximize electricity generation and to top off the batteries. All nonessential equipment was shut down so that power could be diverted to heaters that kept the rovers’ internal temperature above –40°F (–40°C).

An artist’s impression portrays a NASA Mars Exploration Rover. Rovers Opportunity and Spirit were launched a few weeks apart in 2003 and landed in January 2004 at two sites on Mars.

Continuing mission

The hibernation worked, and incredibly, JPL has managed to extend the rover missions from a few days to several years. More than five years into its mission, however, Spirit became bogged down in soft soil; all attempts to free it by remote control from Earth failed, and unable to move to a winter refuge, Spirit finally lost power 10 months later. It had traveled 4.8 miles (7.73 km). Opportunity, meanwhile, has avoided mishap and continues to operate. In 2014, it beat Lunokhod 2’s distance record, and by August 2015 it had completed the marathon distance of 26.4 miles (42.45 km). This was no mean feat on a planet located some hundreds of millions of miles from Earth.

In the “Kimberley” formation on Mars, photographed by Curiosity, strata indicate a flow of water. In the distance is Mount Sharp, named after US geologist Robert P. Sharp in 2012.

Curiosity needed

Spirit and Opportunity were equipped with the latest detectors; including a microscope for imaging mineral structures and a grinding tool for accessing samples from the interiors of rocks.

However, Curiosity, the next rover to arrive on the planet in August 2012, carried instruments that not only studied the geology of Mars but also looked for biosignatures—the organic substances that would indicate whether Mars once harbored life. These included the SAM or Sample Analysis at Mars device, which vaporized samples of ground rock to reveal their chemicals. In addition, the rover monitored radiation levels to see whether the planet would be safe for future human colonization.

Considerably larger than previous rovers, Curiosity was delivered to Mars in an unusual way. During the landing phase of the mission, the radio delay (caused by the sheer distance from Earth) was 14 minutes, and the journey through the atmosphere to the surface would take just seven—all on autopilot (not remotely controlled from Earth). This created “seven minutes of terror”: the engineers on Earth knew that by the time a signal arrived informing them that Curiosity had entered the Martian atmosphere, the rover would already have been on the ground for seven minutes—and would be operational or smashed to pieces.

“The Seven Minutes of Terror has turned into the Seven Minutes of Triumph.” John Grunsfeld

Safe landing

As Curiosity’s landing craft moved through the upper atmosphere, its heat shield glowed with heat, while rockets adjusted the descent speed to reach the Gale Crater, an ancient crater caused by a massive meteorite impact. A parachute slowed the craft to about 200 mph (320 km/h), but this was still too fast for a landing. It continued to slow its descent over a flat region of the crater, avoiding the 20,000-ft (6,000-m) mountain at its center. The craft reached about 60 ft (20 m) above the surface and then had to hover, since going too low would create a dust cloud that might wreck its instruments. The rover was finally delivered to the surface via a rocket-powered hovering platform called a sky crane. The sky crane then had to be detached and blasted clear of the area so that its eventual impact did not upset any future exploration.

Having survived the landing, Curiosity signaled to Earth that it had arrived safely. Curiosity’s power supply is expected to last at least 14 years, and the initial two-year mission has now been extended indefinitely. So far, it has measured radiation levels, revealing that it may be possible for humans to survive on Mars; discovered an ancient stream bed, suggesting a past presence of water and perhaps even life; and found many of the key elements for life, including nitrogen, oxygen, hydrogen, and carbon.

EXOMAR

In 2020, the European Space Agency, in collaboration with the Russian space agency, Roscosmos, will launch its first Mars rover, ExoMars (Exobiology on Mars), with the goal of landing on Mars the following year. In addition to looking for signs of alien life, the solar-powered rover will carry a ground-penetrating radar that will look deep into Martian rocks to find groundwater. The ExoMars rover will communicate with Earth via the ExoMars Trace Gas Orbiter, which was launched in 2016. This system will limit data transfer to twice a day. The rover is designed to drive by itself; its control software will build a virtual model of the terrain and navigate through that. The rover software was taught how to drive in Stevenage, England, at a mockup of the Martian surface called the Mars Yard (above).

The ExoMars rover is expected to operate for at least seven months and to travel 2.5 miles (4 km) across the Martian surface. It will be delivered to the surface by a robotic platform that will then remain in place to study the area around the landing site.

Continue Reading

Planets

WE CHOOSE TO GO TO THE MOON

Published

on

In the early 1960s, the US lagged behind the Soviet Union in the “Space Race.” The Soviets had launched the first satellite in 1957, and on April 16, 1961, Yuri Gagarin became the first human in space. In response, in 1961 US President John F. Kennedy publicly committed to landing a man on the moon before the end of the decade. The project was carefully chosen—landing on the moon was so far beyond the capabilities of either protagonist that the Soviets’ early lead might not seem so significant.

Despite the reservations of many at the time regarding a moon landing’s scientific value, especially given the dangers and technical complexities involved, human spaceflight was now the focus of the US space program. NASA managers felt that with enough funding they could put a man on the moon by 1967. NASA administrator James E. Webb suggested another two years be added as a contingency.

In those six years from 1961 to 1967, NASA tripled its workforce, even though most of the planning, designing, and building of the hardware was undertaken by private industry, research institutes, and universities. NASA claimed that only the construction of the Panama Canal and the Manhattan Project to develop the nuclear bomb rivaled the effort and expense of the Apollo program.

“I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him safely to the Earth.” John F. Kennedy

Project Mercury astronaut John Glenn enters the Friendship 7 on February 20, 1962. His mission, lasting just under five hours, was the US’s first manned orbital spaceflight.

Which way to the moon?

At the time of Kennedy’s historic announcement, the US boasted a grand total of 15 minutes of human spaceflight. To move from here to a moon landing, many technological hurdles needed to be overcome. One of the first was the method of getting to the moon. Three options, known as mission architectures, were on the table. The direct ascent (DA) profile, or “all-theway,” required an enormous multistage rocket with enough fuel on board to transport the crew back to Earth. This was initially the favored approach. However, it was also the most expensive, and doubts were raised over the feasibility of building such a monster rocket before the 1969 deadline.

In the Earth-orbit rendezvous (EOR) profile, a moon-bound rocket ship would be assembled in space and dock with modules that had already been placed in orbit. Lifting things into space is the most energy-consuming part of any off-Earth mission, but multiple rocket launches would sidestep the need for a single spaceship. This was the safest option, but it would be slow. The real weight-savings came with the lunar-orbit rendezvous (LOR) profile.

Here, a smaller rocket would put a three-part spaceship on course to the moon. At the moon, a command module would remain in orbit with the fuel for the journey home, while a lightweight two-stage lunar lander would be sent to the surface. This quick and comparatively cheap option carried with it the very real risk of leaving a crew stranded in space should anything go wrong. After much debate and lobbying, influential figures, such as Wernher von Braun, director of NASA’s Marshall Space Flight Center, threw their backing behind LOR, and in 1962, LOR was chosen. This was the first of many leaps of faith for Apollo.

Technological hurdles

On February 20, 1962, John Glenn became the first American to orbit Earth, looping three times around the planet in Friendship 7, as part of the US’s first spaceflight program, Project Mercury, which ran from 1958 to 1963. Three more successful Mercury flights followed, but there was a big difference between operations in low Earth orbit and landing on the moon. An entire new fleet of launch vehicles was required. Unlike Mercury spacecraft, which carried a single astronaut, Apollo missions would need a crew of three. In addition, a more reliable power source was needed and much more experience in space. The world’s first fuel cells were built to provide the power.

Project Gemini, NASA’s second human spaceflight program, provided the skills, with endurance spaceflights, orbital maneuvers, and space walks. Scientists also needed to know more about the moon’s surface. A deep layer of dust could swallow up a spacecraft and prevent it from leaving, clog up the thrusters, or cause the electronics to malfunction.

Unmanned fact-finding missions were mounted in parallel with Apollo, but the first wave of robotic explorers dispatched to the moon was an unmitigated failure. Six Ranger landers failed on launch, missed the moon, or crashed on impact, causing the program to be nicknamed “shoot and hope.” Luckily, the final three Rangers were more successful.

Between 1966 and 1967, five Lunar Orbiter satellites were placed in orbit around the moon. They mapped 99 percent of the surface and helped to identify potential Apollo landing sites. NASA’s seven Surveyor spacecraft also demonstrated the feasibility of a soft landing on the lunar soil.

The Saturn V rocket was developed for the Apollo program. Many private corporations were involved in its production, including Boeing, Chrysler, Lockheed, and Douglas.

“From this day forward, Flight Control will be known by two words: “Tough and Competent.”” Gene Kranz

A gamble and a disaster

At 363 ft (110.5 m), Saturn V—the heavy-lift booster that carried the Apollo astronauts out of Earth’s atmosphere—is still the tallest, heaviest, and most powerful rocket ever built. “Man-rating” the rocket (certifying it to carry a human crew) proved particularly troublesome. The mammoth engines generated vibrations that threatened to break the rocket apart. Knowing that the project was behind schedule, NASA’s associate administrator for manned spaceflight, George Mueller, pioneered a daring “all-up” testing regime. Rather than the cautious stage-by-stage approach favored by von Braun, Mueller had the entire Apollo–Saturn systems tested together.

While striving for perfection, the NASA engineers developed a new engineering concept: that of redundancy. Key or critical components were duplicated in order to increase overall reliability. The Mercury and Gemini projects had taught engineers to expect unforeseen risks. A fully assembled Apollo vehicle had 5.6 million parts, and 1.5 million systems, subsystems, and assemblies. Even with 99.9 percent reliability, the engineers could anticipate 5,600 defects. Nevertheless, over its 17 unmanned and 15 manned flights, the Saturn boosters had shown 100 percent reliability. With two partially successful test flights under its belt, Mueller declared that the next launch would carry astronauts.

Until 1967, progress had been smooth, despite the breakneck pace. Then disaster struck. An electrical short-circuit during a launch rehearsal started a fire that incinerated the Apollo 1 crew inside the Command Module. The toxic smoke and intensity of the fire in a pressurized, pure-oxygen atmosphere killed Virgil “Gus” Grissom, Ed White, and Roger Chaffee in less than five minutes. In the wake of this tragedy, the next five Apollo missions were unmanned tests. Modifications were made, resulting in a safer spacecraft with a new gas-operated hatch, a 60–40 oxygen–nitrogen mix in the cockpit, and fireproof wiring throughout.

The Lunar Orbiter satellites took images of potential landing sites. In 1966, Lunar Orbiter 2 sent back this image of Copernicus Crater, one of the first-ever close-up views of the moon.

“Apollo riding his chariot across the sun was appropriate to the grand scale of the proposed program.” Abe Silverstein

Earth’s place in space

Apollo 8 was the first manned spacecraft to leave Earth’s orbit. On Christmas Eve 1968, Frank Borman, James Lovell, and Bill Anders looped around the far side of the moon and witnessed the astounding sight of Earth rising from behind the moon’s surface. For the first time, humans could see their home from space—a startlingly blue world lost in the immensity of the void. As Anders put it: “We came all this way to explore the moon, and the most important thing is that we discovered the Earth.”

The crew was also the first to pass through the Van Allen radiation belts. This zone of charged particles extends up to 15,000 miles (24,000 km) from Earth, and was initially thought to be a serious barrier to human space travel. As it turned out, it resulted in a dosage of radiation only equivalent to a chest X-ray.

Finally, the program was ready for the last step—to take real steps on the moon itself. On July 21, 1969, an estimated global audience of 500 million tuned in to watch Neil Armstrong land the Lunar Module and step out onto the surface of the moon, closely followed by Buzz Aldrin. It was the culmination of nearly a decade of collaborative effort and effectively ended the Space Race.

There were six more missions to the moon following Apollo 11, including the near-disaster of Apollo 13, whose lunar landing in 1970 was aborted after an oxygen tank exploded on board. The crew was returned safely to Earth on the crippled spacecraft in a real-life drama that played out in front of a worldwide television audience.

In 1968, Apollo 8 broadcast live from moon orbit. Images taken from the spacecraft by astronaut Bill Anders included the iconic Earthrise.

Learning about the moon

Before Apollo, much of what was known about the physical nature of Earth’s only natural satellite was speculation but, with the political goals achieved, here was an opportunity to find out about an alien world firsthand. Each of the six landing missions carried a kit of scientific tools—the Apollo Lunar Surface Experiments Package (ASLEP). Apollo’s instruments tested the internal structure of the moon, detecting seismic vibrations that would indicate a “moonquake.” Other experiments measured the moon’s gravitational and magnetic fields, heat flow from its surface, and the composition and pressure of the lunar atmosphere.

Thanks to Apollo, scientists have compelling evidence from analysis of moon rock that the moon was once a part of Earth. Like Earth, the moon also has internal layers and was most likely molten at some point in its early history. Unlike Earth, however, the moon has no liquid water. Since it has no moving geological plates, its surface is not continually repaved, and so the youngest moon rocks are the same age as Earth’s oldest. The moon is not entirely geologically inactive, however, and occasionally has moonquakes that last for hours.

One Apollo 11 experiment remains active and has been returning data since 1969. Reflectors planted on the lunar surface bounce back laser beams fired from Earth, enabling scientists to calculate the distance to the moon to within an accuracy of a couple of millimeters. This gives precise measurements of the moon’s orbit, and the rate at which it is drifting away from Earth (about 1½ in [3.8 cm] per year).

Neil Armstrong took this famous photograph of Buzz Aldrin on the surface of the moon. Armstrong’s reflection, standing next to the lunar module, can be seen in Aldrin’s visor.

Apollo’s legacy

On December 19, 1972, the sonic boom over the South Pacific, as the Apollo 17 capsule thumped into Earth’s atmosphere, sounded the end of the Apollo program. In total, 12 men had walked on the moon. At the time, it was widely assumed that routine flights to Mars would soon be a reality, but in the intervening 40 years, scientific priorities changed, politicians worried about costs, and human space travel has not ventured farther than Earth’s orbit.

For many, the decision to end manned moon missions was a wasted opportunity, caused by a lack of imagination and leadership. However, the end of the acute Cold War competition that gave rise to the Apollo program heralded a new era of international cooperation for NASA, with Skylab, Mir, and the International Space Station.

Gene Cernan, the last man on the moon, predicted that it could be another 100 years before humankind appreciates the true significance of the Apollo missions. One result could be that it may have made the US smarter—the intake for doctoral degrees at American universities tripled during the 1960s, particularly in the field of physics. Apollo contracts also nurtured nascent industries, such as computing and semiconductors. Several employees of the California-based Fairchild Semiconductors went on to found new companies, including Intel, a technology giant. The Santa Clara area where these firms were based has become today’s Silicon Valley. But perhaps Apollo’s real legacy is the idea of Earth as a fragile oasis of life in space. Photos taken from orbit, such as the “Blue Marble” and “Earthrise”, fed into a growing awareness of planet Earth as a single entity, and the need for careful stewardship.

Apollo 11’s command and service module docked with the lunar module in orbit before heading for the moon. Before touchdown, the service module was jettisoned, and only the command module returned to Earth.

“Houston. Tranquility Base here. The Eagle has landed.” Neil Armstrong

On the final three Apollo missions, astronauts explored the surface of the moon on lunar rovers. The rovers were abandoned and can still be seen where they were left behind

GENE KRANZ

Perhaps the embodiment of the NASA spirit is not the heroic astronauts but the legendary Apollo flight director Gene Kranz. Born in 1933, Kranz was fascinated by space from an early age. He served as a pilot with the US Air Force before leaving to pursue rocket research with the McDonnell Aircraft Corporation and then NASA.

Prominent and colorful, with a brutally close-cut flattop hairstyle, Kranz was unmistakable in Mission Control, dressed in his dapper white “mission” vests made by his wife.

Although he never actually spoke the words “Failure is not an option”— they were written for his character in the movie Apollo 13—they sum up his attitude. Kranz’s address to his Flight Control staff after the Apollo 1 disaster has gone down in history as a masterpiece of motivational speaking. In it, he stated the Kranz Dictum—“tough and competent”—that would guide Mission Control. Kranz was awarded the Presidential Medal of Freedom in 1970 for successfully returning Apollo 13 to Earth.

Continue Reading

Planets

THE MOST TREU PATH OF THE PLANER IS AN ELLIPSE

Published

on

Before the 17th century, all astronomers were also astrologers. For many, including German astronomer Johannes Kepler, casting horoscopes was the main source of their income and influence. Knowing where the planets had been in the sky was important, but of greater significance for constructing astrological charts was the ability to predict where the planets would be over the next few decades.

To make predictions, astrologers assumed that the planets moved on specific paths around a central object. Before Copernicus, in the 16th century, this central body was thought by most to be Earth. Copernicus showed how the mathematics of planetary prediction could be simplified by assuming that the central body was the sun. However, Copernicus assumed that orbits were circular, and to provide any reasonable predictive accuracy, his system still required the planets to move around a small circle, the center of which moved around a larger circle. These circular velocities were always assumed to be constant.

Kepler supported the Copernican system, but the planetary tables it produced could still easily be out by a day or two. The planets, the sun, and the moon always appeared in a certain band of the sky, known as the ecliptic, but actual paths of individual planets around the sun were still a mystery, as was the mechanism that made them move.

“Kepler was never satisfied by a moderate agreement between theory and observation. The theory had to fit exactly otherwise some new possibility had to be tried.” Fred Hoyle

Kepler’s most productive years came in Prague under the patronage of Holy Roman Emperor Rudolf II (r.1576–1612). Rudolf was particularly interested in astrology and alchemy.

Finding the paths

To improve the predictive tables, Danish astronomer Tycho Brahe spent more than 20 years observing the planets. He next tried to ascertain a path of each planet through space that would fit the observational data. This is where the mathematical abilities of Kepler, Brahe’s assistant, came into play. He considered specific models for the solar system and the paths of the individual planets in turn, including circular and ovoid (egg-shaped) orbits. After many calculations, Kepler determined whether or not the model led to predictions of planetary positions that fit into Tycho’s precise observations. If there was not exact agreement, he would discard the idea and start the process again.

Abandoning circles

In 1608, after 10 years of work, Kepler found the solution, which involved abandoning both circles and constant velocity. The planets made an ellipse— a kind of stretched-out circle for which the amount of stretching is measured by a quantity called an eccentricity. Ellipses have two foci. The distance of a point on an ellipse from one focus plus the distance from the other focus is always constant. Kepler found that the sun was at one of these two foci.

These two facts made up his first law of planetary motion: the motion of the planets is an ellipse with the sun as one of the two foci. Kepler also noticed that the speed of a planet on its ellipse was always changing, and that this change followed a fixed law (his second): a line between the planet and the sun sweeps out equal areas in equal times. These two laws were published in his 1609 book Astronomia Nova.

Kepler had chosen to investigate Mars, which had strong astrological significance, thought to influence human desire and action. Mars took variable retrograde loops—periods during which it would reverse its direction of movement—and large variations in brightness. It also had an orbital period of only 1.88 Earth years, meaning that Mars went around the sun about 11 times in Tycho’s data set. Kepler was lucky to have chosen Mars, since its orbit has a high eccentricity, or stretch: 0.093 (where 0 is a circle and 1 is a parabola). This is 14 times the eccentricity of Venus. It took him another 12 years to show that the other planets also had elliptical orbits.

Studying Brahe’s observations, Kepler was also able to work out the planets’ orbital periods. Earth goes around the sun in one year, Mars in 1.88 Earth years, Jupiter in 11.86, and Saturn in 29.45. Kepler realized that the square of the orbital period was proportional to the cube of the planet’s average distance from the sun. This became his third law and he published it in 1619 in his book Harmonices Mundi, alongside lengthy tracts on astrology, planetary music, and platonic figures. The book had taken him 20 years to produce.

When just one body goes around a larger body undisturbed, the paths it can follow are known as Kepler orbits. These are a group of curves called conic sections, which include ellipses, parabolas, and hyperbolas. The shape of the orbit is defined by a property called eccentricity. An eccentricity of 0 is a circle (A). Eccentricity between 0 and 1 is an ellipse (B). Eccentricity equal to 1 produces a parabola (C), and greater than 1 a hyperbola (D).

Searching for meaning

Kepler was fascinated by patterns he found in the orbits of the planets. He noted that, once you accepted the Copernican system for the cosmos, the size of the orbits of the six planets—Mercury, Venus, Earth, Mars, Jupiter, and Saturn—appeared in the ratios 8 : 15 : 20 : 30 : 115 : 195.

Today, astronomers might look at a list of planetary orbital sizes and eccentricities and regard them as the result of the planetary formation process coupled with a few billion years of change. To Kepler, however, the numbers needed explanation. A deeply religious man, Kepler searched for a divine purpose within his scientific work. Since he saw six planets, he presumed that the number six must have a profound significance. He produced an ordered geometric model of the solar system in which the sun-centered spheres that contained each planetary orbit were inscribed and circumscribed by a specific regular “platonic” solid (the five possible solids whose faces and internal angles are all equal). The sphere containing the orbit of Mercury was placed inside an octahedron. The sphere that just touched the points of this regular solid contained the orbit of Venus. This in its turn was placed inside an icosahedron. Then followed the orbit of Earth, a dodecahedron, Mars, a tetrahedron, Jupiter, a cube, and finally Saturn. The system was beautifully ordered, but inaccurate.

Kepler’s great breakthrough was his calculation of the actual form of the planetary orbits, but the physics behind his three laws did not seem to concern him. Rather, he suggested that Mars was carried on its orbit by an angel in a chariot, or swept along by some magnetic influence emanating from the sun. The idea that the movements were due to a gravitational force only arrived with the ideas of Isaac Newton some 70 years later.

According to Kepler’s second law, the line joining a planet to the sun sweeps out equal areas in equal times. This is also known as the law of equal areas. It is represented by the equal areas of the three shaded areas ABS, CDS, and EFS. It takes as long to travel from A to B as from C to D and from E to F. A planet moves most rapidly when it is nearest the sun, at perihelion; a planet’s slowest motion occurs when it is farthest from the sun, at aphelion.

Wider contributions

Kepler also made important advances in the study of optics, and his 1604 book Astronomiae Pars Optica is regarded as the pioneer tome in the subject. Galileo’s telescope interested him greatly and he even suggested an improved design using convex lenses for both the objective and the magnifying eyepiece. He wrote, too, about the supernova that was first seen in October 1604, today commonly called Kepler’s supernova. Following Tycho, Kepler realized that the heavens could change, contradicting Aristotle’s idea of a “fixed cosmos.” A recent planetary conjunction coupled with this new star led him to speculate about the Biblical “Star of Bethlehem.” Kepler’s fervent imagination also produced the book Somnium, in which he discusses space travel to the moon and the lunar geography a visitor might expect on arrival. Many regard this as the first work of science fiction.

Kepler’s most influential publication, however, was a textbook on astronomy called Epitome Astronomiae Copernicanae, and this became the most widely used astronomical work between 1630 and 1650. He ensured that the Rudolphine Tables (named after Emperor Rudolf, his patron in Prague) were eventually published, and these tables of predicted planetary positions helped him greatly with the well-paid calendars that he published between 1617 and 1624. The accuracy of his tables, proven over a few decades, also did much to encourage the acceptance of both the Copernican sun-centered solar system and Kepler’s own three laws.

“Kepler was convinced that God created the world in accordance with the principle of perfect numbers, so that the underlying mathematical harmony … is the real and discoverable cause of the planetary motion. “ William Dampier

In Harmonices Mundi, Kepler experimented with regular shapes to unlock the secrets of the cosmos. He linked these shapes with harmonics to suggest a “music of the spheres.”

JOHANNES KEPLER

Born prematurely in 1571, Kepler spent his childhood in Leonberg, Swabia, in his grandfather’s inn. Smallpox affected his coordination and vision. A scholarship enabled him to attend the Lutheran University of Tübingen in 1589, where he was taught by Michael Maestlin, Germany’s top astronomer at the time. In 1600, Tycho Brahe invited Kepler to work with him at Castle Benátky near Prague. On Tycho’s death in 1601, Kepler succeeded him as Imperial Mathematician.

In 1611, Kepler’s wife died, and he became a teacher in Linz. He remarried and had seven more children, five of whom died young. His work was then disrupted between 1615 and 1621 while he defended his mother from charges of witchcraft. The Catholic Counter-Reformation in 1625 caused him further problems, and prevented his return to Tübingen. Kepler died of a fever in 1630.

Continue Reading

Trending

Copyright © 2020 Physics4All.